Factorization in exclusive semileptonic radiative B decays

Vincenzo Cirigliano

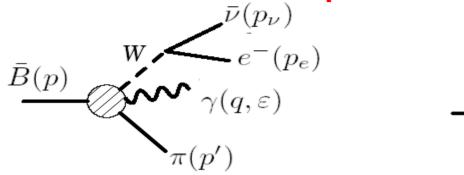
Motivation – why look at B $\rightarrow \pi \ l\nu \gamma$?

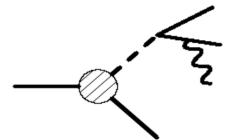
■ Radiative effects [virtual and real] will soon become an issue at B factories for several channels → need theoretical input to test/improve MC simulations

www.slac.stanford.edu/BFROOT/www/Public/ Organization/2005/workshops/radcorr2005/index.html

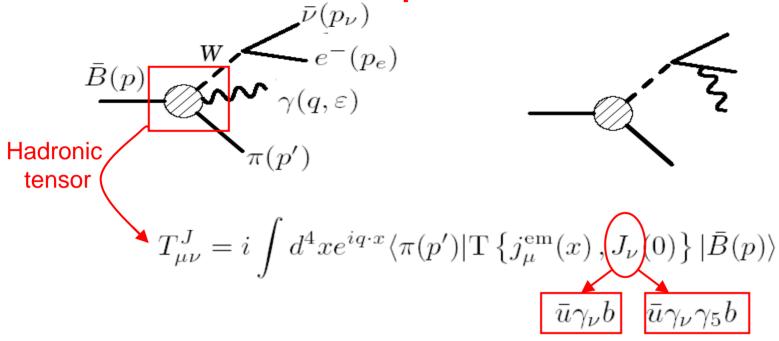
- In kinematical region of hard γ and soft π we can make predictions combining SCET + ChPT: interesting on its own!
- In this talk:
 - → present factorization formula sketch proof
 - \rightarrow phenomenology: BR[cuts], distributions in E_{\gamma} and $\theta_{e\gamma}$ (including comparison with simplified MC treatments)

Amplitude decomposition – form factors

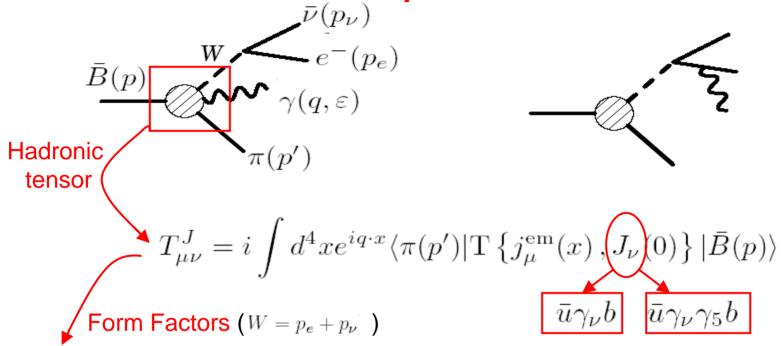




Amplitude decomposition – form factors



Amplitude decomposition – form factors



$$\varepsilon^{*\mu}T^{V}_{\mu\nu} = V_{1}(\varepsilon^{*}_{\nu} - \frac{\varepsilon^{*} \cdot W}{q \cdot W}q_{\nu}) + (p' \cdot \varepsilon^{*} - \frac{(p' \cdot q)(\varepsilon^{*} \cdot W)}{q \cdot W})(V_{2}q_{\nu} + V_{3}W_{\nu} + V_{4}p'_{\nu}) - \frac{\varepsilon^{*} \cdot W}{q \cdot W}\langle \pi(p')|\bar{u}\gamma_{\nu}b|\bar{B}(p)\rangle$$

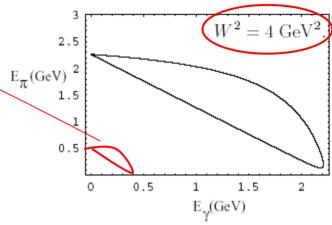
$$\varepsilon^{*\mu}T^{A}_{\mu\nu} = i\epsilon_{\mu\nu\rho\sigma}\varepsilon^{*\mu}(A_{1}p'_{\rho}q_{\sigma} + A_{2}q_{\rho}W_{\sigma}) + i\epsilon_{\mu\lambda\rho\sigma}\varepsilon^{*\mu}p'_{\lambda}q_{\rho}W_{\sigma}(A_{3}W_{\nu} + A_{4}p'_{\nu})$$

 $V_{1,...,4}$ and $A_{1,...,4}$ are functions of 3 variables: use W^2 , E_{π} , E_{γ}

What do we know about the amplitude?

■ Large W² → E_{π} , $E_{\gamma} << \Lambda_{\gamma SB}$ → Heavy Hadron ChPT

 $m_e^2 \le W^2 \le (M_B - M_\pi)^2$

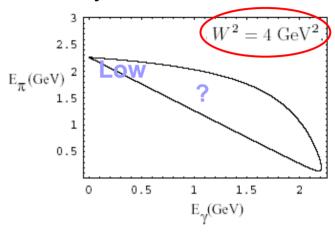


What do we know about the amplitude?

■ Large W² → E_{π} , $E_{\gamma} << \Lambda_{\chi SB}$

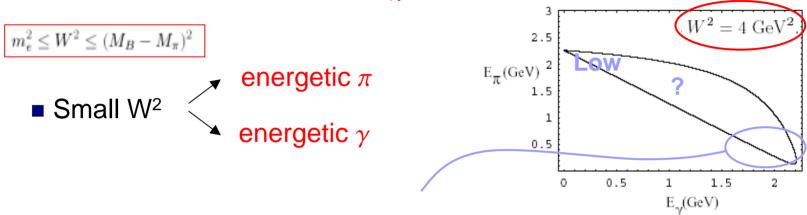
→ Heavy Hadron ChPT

 $m_e^2 \le W^2 \le \overline{(M_B - M_\pi)^2}$ $\blacksquare \text{ Small W}^2$ $\bullet \text{ energetic } \gamma$



What do we know about the amplitude?

■ Large W² \rightarrow E_{π} , $E_{\gamma} << \Lambda_{\chi SB}$ \rightarrow Heavy Hadron ChPT



Hierarchy of scales leads to factorized form of amplitude

$$Q \sim \{E_{\gamma}, m_b\} \gg \Lambda \sim \{E_{\pi}, \Lambda_{\rm QCD}\}$$

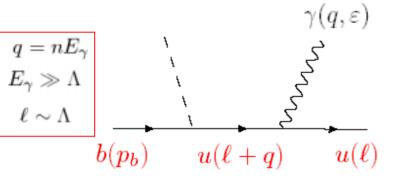
$$A(B \to \pi \ell \nu \gamma) \ = \ H \cdot J \otimes S(B \to \pi) + O(\Lambda/Q)$$

Perturbatively calculable

"Soft" matrix element of bi-local operator Use HHChPT to relate it to B-meson LCDA

Factorization I

To leading order in $lpha_s$ and Λ/Q , $B o \pi \ell
u \gamma$ is mediated by



$$(q+\ell)^2 \sim 2E_{\gamma} (n \cdot \ell) \sim Q \Lambda \gg \Lambda^2$$

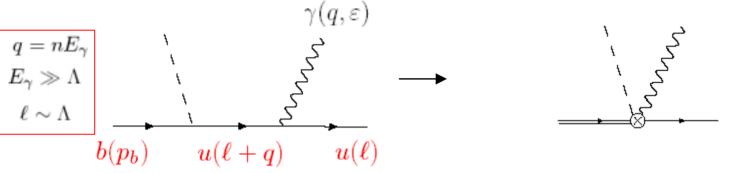
$$\langle T_{\mu\nu}\rangle \sim ie_u \, \bar{u}(\ell) \underbrace{\frac{\gamma_\mu \eta\!\!\!/ \gamma_\nu}{2n \cdot \ell\!\!\!/ + i\epsilon}} b(p_b)$$

→ Integrate out hard-collinear light quark

Dependence on light-cone projection of ℓ → EFT involves bi-local light-cone operators

Factorization I

To leading order in $lpha_s$ and Λ/Q , $B o \pi \ell
u \gamma$ is mediated by



$$(q+\ell)^2 \sim 2E_{\gamma} (n \cdot \ell) \sim Q \Lambda \gg \Lambda^2$$

$$\langle T_{\mu\nu}\rangle \sim ie_u \, \bar{u}(\ell) \underbrace{\frac{\gamma_\mu \eta\!\!/ \gamma_\nu}{2n \cdot \ell + i\epsilon}} \, b(p_b)$$

→ Integrate out hard-collinear light quark

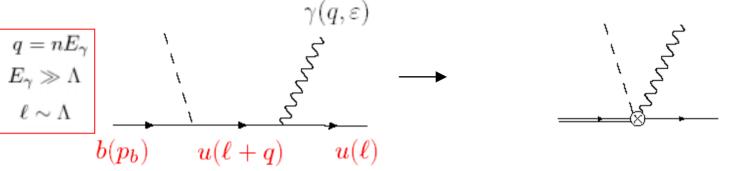
Dependence on light-cone projection of ℓ \Rightarrow EFT involves bi-local light-cone operators

$$\int d^4x e^{iq.x} T\{(\bar{q}\gamma_{\nu}P_Lb)(0), j_{\mu}^{\text{e.m.}}(x)\} \longrightarrow \int dt \ \left[e_{u}\theta(t)\right] \bar{u}(nt) S_n(nt,0) \left[\gamma_{\mu} \frac{\eta}{2} \gamma_{\nu}\right] b(0)$$

$$\text{Wilson line} \qquad \mathcal{P} \exp \left[ig_s \int_0^t ds \ n \cdot A(ns)\right]$$

Factorization I

To leading order in $lpha_s$ and Λ/Q , $B o \pi \ell
u \gamma$ is mediated by



$$(q+\ell)^2 \sim 2E_{\gamma} (n \cdot \ell) \sim Q \Lambda \gg \Lambda^2$$

$$\langle T_{\mu\nu}\rangle \sim ie_u \, \bar{u}(\ell) \underbrace{\frac{\gamma_\mu \eta \!\!\!/ \gamma_\nu}{2n \cdot \ell + i\epsilon}} b(p_b)$$

→ Integrate out hard-collinear light quark

Dependence on light-cone projection of ℓ → EFT involves bi-local light-cone operators

$$\int d^{4}x e^{iq.x} T\{(\bar{q}\gamma_{\nu}P_{L}b)(0), j_{\mu}^{\text{e.m.}}(x)\} \longrightarrow 1 \cdot \int d\omega \begin{bmatrix} ie_{u} \\ \omega + i\epsilon \end{bmatrix} \underbrace{\int \frac{dt}{2\pi} e^{-i\omega t} \bar{u}(nt) S_{n}(nt, 0) \begin{bmatrix} \gamma_{\mu} \frac{\eta'}{2} \gamma_{\nu} \end{bmatrix} b(0)}_{\bullet}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$J(\omega)$$

$$O(\omega)$$

Factorization II

Proof to all orders in $\alpha_s \rightarrow$ Use Soft-Collinear Effective Theory (SCET)

Bauer, Fleming, Pirjol, Stewart; Beneke et al; Neubert-Hill

Same steps as in $~B \to \ell \nu \gamma~$ factorization

Sachrajda, Descotes-Genon Lunghi, Pirjol, Wyler Bosh, Hill, Lange, Neubert

$$\varepsilon^{*\mu}T_{\mu\nu}(q) \to -C_1^{(v)}\,e_u\,\int d\omega J(\omega) \underbrace{O_{1\nu}(\omega)} - [C_2^{(v)}v_\nu + (C_1^{(v)} + C_3^{(v)})\frac{n_\nu}{n\cdot v}]e_u \int d\omega J(\omega) \underbrace{O_2(\omega)} + C_2^{(v)}v_\nu + (C_1^{(v)} + C_3^{(v)})\frac{n_\nu}{n\cdot v}]e_u \int d\omega J(\omega) \underbrace{O_2(\omega)} + C_2^{(v)}v_\nu + C_3^{(v)} + C_3^$$

$$O_{1\mu}(\omega) = \int \frac{dt}{2\pi} e^{-it\omega} \bar{q}(nt) S_n(nt, 0) \not \xi_{\perp}^* \frac{n!}{2} \gamma_{\mu}^{\perp} P_L b_v(0)$$

$$O_2(\omega) = \int \frac{dt}{2\pi} e^{-it\omega} \, \bar{q}(nt) \, S_n(nt,0) \not \xi_{\perp}^* \frac{\not h}{2} P_R \, b_v(0)$$

 $C_i^v(E_\gamma)$ and $J(\omega)$ are known to $O(lpha_s)$

The soft matrix elements

- Above relation valid for any $B \to M_{\rm soft} \ell \nu \gamma$ (derived at operator level)
- If M=π can calculate matrix element using HHChPT, which incorporates heavy quark symmetry and chiral symmetry

 Burdman, Donoghue

 Wise

The soft matrix elements

- Above relation valid for any $B \to M_{\rm soft} \ell \nu \gamma$ (derived at operator level)
- If $M=\pi$ can calculate matrix element using HHChPT, which incorporates heavy quark symmetry and chiral symmetry Burdman, Donoghue Wise

Heavy mesons

$$ar{q}^a\,b \qquad \leftrightarrow$$

$$H^a = \frac{1+\psi}{2} \left[B_a^* \gamma_\mu - B_a \gamma_5 \right]$$

Goldstone modes

$$\xi = e^{iM/f}$$

$$M = \begin{pmatrix} \frac{1}{\sqrt{2}} \pi^0 + \frac{1}{\sqrt{6}} \eta & \pi^+ & K^+ \\ \pi^- & -\frac{1}{\sqrt{2}} \pi^0 + \frac{1}{\sqrt{6}} \eta & K^0 \\ K^- & \bar{K}^0 & -\frac{2}{\sqrt{6}} \eta \end{pmatrix}$$

Chiral symmetry
$$\begin{array}{c} L,R \in SU(3)_{L,R} \\ \\ U(L,R,M) \in SU(3) \end{array}$$

HQ spin symmetry

$$\xi \to L \xi U^{\dagger} = U \xi R^{\dagger} \qquad H_a \to H_b U_{ba}^{\dagger}$$

$$H_a \rightarrow H_b U_{ba}^{\dagger}$$

$$H \rightarrow SH$$

■ Leading order chiral realization of bi-local operator ~ $(\overline{\bf 3}_L, {\bf 1}_R)$

$$O_{\Gamma}^{a}(\omega) = \int \frac{dt}{2\pi} e^{-it\omega} \, \bar{q}^{a}(nt) S_{n}(nt,0) \, P_{R} \Gamma \, b_{v}(0) \quad \longrightarrow \quad \frac{i}{4} \text{Tr} [\hat{\alpha}_{L}(\omega) P_{R} \Gamma H_{b} \xi_{ba}^{\dagger}]$$

$$\hat{lpha}_L(\omega) = a_1 + a_2 n + a_3 p + \frac{1}{2} a_4 [n / p]$$

 $H\psi = -H \rightarrow$ only two independent functions

■ Leading order chiral realization of bi-local operator ~ $(\overline{\bf 3}_L, {\bf 1}_R)$

$$O_{\Gamma}^{a}(\omega) = \int \frac{dt}{2\pi} e^{-it\omega} \, \bar{q}^{a}(nt) S_{n}(nt,0) \, P_{R} \Gamma \, b_{v}(0) \quad \longrightarrow \quad \frac{i}{4} \text{Tr} [\hat{\alpha}_{L}(\omega) P_{R} \Gamma H_{b} \xi_{ba}^{\dagger}]$$

$$\hat{lpha}_L(\omega) = a_1 + a_2 n + a_3 p + \frac{1}{2} a_4 [n / p]$$

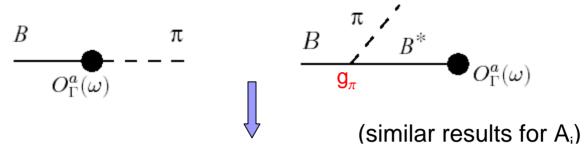
 $H\psi = -H \rightarrow$ only two independent functions

■ Take B → vacuum matrix element + use definition of B-meson LCDA

$$\hat{\alpha}_L(\omega) = -f_B \sqrt{m_B} [\vec{\eta} \phi_+(\omega) + \eta \phi_-(\omega)]$$

To LO in low energy expansion B $\rightarrow \pi$ matrix elements fixed in terms of B-meson LCDA !!

Factorization result



$$V_1 = 2e_u C_1^{(v)}(E_{\gamma}) \int d\omega J(\omega) S_1(\omega, p, p')$$

$$V_2 = \frac{e_u}{E_{\gamma}} \left(2C_1^{(v)}(E_{\gamma}) + C_2^{(v)}(E_{\gamma}) + 2C_3^{(v)}(E_{\gamma}) \right) \int d\omega J(\omega) S_2(\omega, p, p')$$

$$V_3 = \frac{2e_u}{n \cdot W} C_2^{(v)}(E_{\gamma}) \int d\omega J(\omega) S_2(\omega, p, p')$$

$$S_1(\omega, p, p') = -\frac{f_B m_B}{4 f_{\pi}} \phi_+^B(\omega) \left(1 + g_{\pi} \frac{(n-v) \cdot p'}{v \cdot p' + m_{B^*} - m_B} \right)$$

 $S_2(\omega, p, p') = \frac{g f_B m_B}{4 f_{\pi}} \phi_+^B(\omega) \frac{1}{v \cdot p' + m_{B^*} - m_B}$

Non-perturbative B meson dynamics appears through the convolution:

$$V_i, A_i \propto \int d\omega \, J(\omega) \, \phi_+^B(\omega)$$

Phenomenology $(\bar{B}^0 \to \pi^+ e^- \bar{\nu}_e \gamma.)$

■ Simplified analysis: neglect $O(\alpha_s)$ corrections to C_i and $J(\omega)$

$$\left(\lambda_B^{-1}\right) = \int d\omega \, \frac{\phi_B(\omega)}{\omega}$$
 induces largest uncertainty

Phenomenology $(\bar{B}^0 \to \pi^+ e^- \bar{\nu}_e \gamma.)$

■ Simplified analysis: neglect $O(\alpha_s)$ corrections to C_i and $J(\omega)$

$$\lambda_B^{-1} = \int d\omega \, \frac{\phi_B^+(\omega)}{\omega}$$

induces largest uncertainty

BR output:

				Low's
cuts	10^6 Br(fact)	$10^6 \text{ B}(\text{IB1})$	$10^6 \; \mathrm{Br}(\mathrm{IB2})$	exti
$E_{\gamma} > 1 \text{ GeV}$				(P
$E_{\pi} < 0.5 \text{ GeV}$	(1.2)	2.4	2.8	Poi
$\theta_{e\gamma} > 5^{\circ}$				(Gi

ow's theorem extrapolated (PHOTOS)

Point-like B (Ginsberg)

Phenomenology ($\bar{B}^0 \to \pi^+ e^- \bar{\nu}_e \gamma$.)

■ Simplified analysis: neglect $O(\alpha_s)$ corrections in C_i and $J(\omega)$

Input:

$$\begin{array}{c}
f_B \\
\lambda_B \\
|V_{ub}|
\end{array}$$

$$(200 \pm 30) \text{ MeV}$$

 $(350 \pm 150) \text{ MeV}$
 0.004

$$f_{\pi}$$

131 MeV

$$0.5 \pm 0.1$$

$$\lambda_B^{-1} = \int d\omega \, \frac{\phi_B^+(\omega)}{\omega}$$

induces largest uncertainty

BR output:

cuts	$10^6 \ \mathrm{Br}(\mathrm{fa}$
$E_{\gamma} > 1 \text{ GeV}$ $E_{\pi} < 0.5 \text{ GeV}$ $\theta_{e\gamma} > 5^{\circ}$	1.2

10⁶ Br(IB1) 10⁶ Br(IB2)

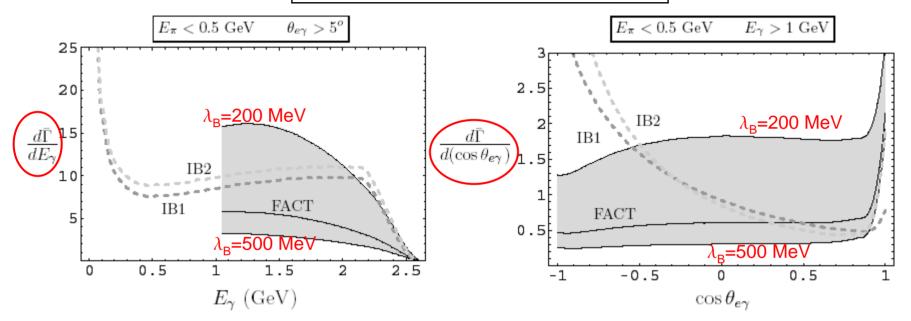
Low's theorem extrapolated (PHOTOS)

Point-like B (Ginsberg)

$$\mathrm{Br}_{\bar{B}\to\pi e\bar{\nu}\gamma}^{\mathrm{cut}}(\mathrm{fact}) \ = \ \left(1.2 \ \pm 0.2(g) \ ^{+2.2}_{-0.6}(\lambda_B)\right) \times 10^{-6} \times \ \left(\frac{|V_{ub}|}{0.004}\right)^2 \times \left(\frac{f_B}{200 \ \mathrm{MeV}}\right)^2$$

■ Differential distributions in E_{γ} and $\cos(\theta_{e\gamma})$

$$\bar{\Gamma} = 10^6 \, \Gamma_{B^0}^{-1} \times \Gamma(\bar{B} \to \pi e \bar{\nu} \gamma)$$



- Factorization predictions are clearly distinct from IB1, IB2
- BR + distributions show strong sensitivity to $\lambda_{\rm B}$ → in the future can obtain constraints on $\lambda_{\rm B}$ from this process (but need to assess size of chiral and O($\alpha_{\rm S}$) corrections)

Conclusions

- Factorization for B $\rightarrow \pi \nu \gamma$ in the region of hard γ and soft π
- Novelty: calculate soft matrix element in HHChPT $B \rightarrow \pi$ predicted in terms of B meson LCDA
- Phenomenology
 - → Factorization predictions for BR, spectrum, etc quite different from other methods on the market (PHOTOS, Ginsberg) → possibility to improve present Monte Carlo
 - ightharpoonup Strong sensitivity to $\lambda_{\rm B}
 ightharpoonup$ possibility to constrain it from B ightharpoonup π Iv γ